

Building upon the previous book in the series, C++ Data Structures from Scratch, Vol. 3.2 is a
comprehensive guide to creating fully functional, STL-style implementations of more advanced data
structures and algorithms, introducing new and powerful C++ language concepts along the way.

Key features:

● 85 complete source code files, with detailed line-by-line analysis and diagrams

● 20 sample programs directly illustrating key concepts from each chapter

● Free sample content and online support at the official website, cppdatastructures.com

Major topics:

● Networks
● Maximum flow (Floyd-Fulkerson Algorithm)
● Maximum flow of minimum cost (Dijkstra-Ford Algorithm)

● Matching algorithms
● Bipartite
● Stable (Gale-Shapley)
● Perfect minimum-weight (Hungarian)

● Data compression (Huffman coding)

● Memory allocation
● Sequential
● Buddy

● String matching algorithms
● Brute force
● Knuth-Morris-Pratt

● Levenshtein distance

● ASCII and binary file I/O

About the author:

● Robert MacGregor is the developer of a C++ API for financial market trading systems. He is
also a CTA (Commodity Trading Advisor) in the National Futures Association, and a
Chartered Market Technician in the CMT Association.

Cover illustration: Convergence by Mark J. Brady (markjaybeefractal.com)

C++ Data Structures from
Scratch, Vol. 3.2

Robert MacGregor

To purchase the full version, visit cppdatastructures.com

Copyright 2021 by Robert MacGregor. All rights reserved.

No part of this book may be reproduced or transmitted by any means without the prior written consent of the
author.

Although every precaution has been taken to verify the accuracy of the information contained herein, the author
and publisher assume no responsibility for errors or omissions. Furthermore, no liability is assumed for any
damages resulting from the use of the information or programs contained herein.

Published by South Coast Books

For errata, supplementary material, and contact / purchase information, visit www.cppdatastructures.com.

Cover illustration: Convergence by Mark J. Brady (www.markjaybeefractal.com)

ISBN-10: 0-9962115-6-X
ISBN-13: 978-0-9962115-6-7

1st Printing, September 2021

To purchase the full version, visit cppdatastructures.com

Dedicated to Liang

To purchase the full version, visit cppdatastructures.com

To purchase the full version, visit cppdatastructures.com

Table of Contents

Introduction and Getting Started

Part 1: Networks

1.1: Ford-Fulkerson Algorithm 1
1.2: Introducing the DemoNetwork Class 29
1.3: Dijkstra-Ford Algorithm 35

Part 2: Matching

2.1: Bipartite Matching 65
2.2: Stable Matching 81

Part 3: Assignment (Hungarian Algorithm)

3.1: Reducing Rows and Columns 95
3.2: Implementing the Main Loop 111
3.3: Handling Multiple Solutions 129

Part 4: Data Compression (Huffman Coding)

4.1: Binary File I/O 145
4.2: Introducing the Tree Class 151
4.3: Introducing the CodeTable Class 161
4.4: Compression 167
4.5: Decompression 191

Part 5: Sequential Allocators

5.1: Allocation 203
5.2: Deallocation 215

Part 6: Buddy Allocators

6.1: Allocation 225
6.2: Deallocation 253

To purchase the full version, visit cppdatastructures.com

Part 7: String Matching

7.1: Brute Force String Matching 269
7.2: Knuth-Morris-Pratt Algorithm 277
7.3: Levenshtein Distance 305

Index 321

To purchase the full version, visit cppdatastructures.com

Introduction and Getting Started

Chapter outline

– A brief review of Volume 3.1
– Obtaining the accompanying source code
– Recommended study approach
– A brief overview of Volume 3.2

Before we begin, let's briefly review the major topics that we covered in Volume 3.1 of C++ Data
Structures from Scratch:

– Data structures
– Trie
– CompressedTrie
– DisjointSet
– EmbeddedMap, RestrictedEmbeddedMap
– Table
– Graph

– Pathfinding algorithms
– Dijkstra
– Bellman-Ford
– Floyd-Warshall
– Cycle detection

– Connectivity algorithms
– Kruskal (minimum spanning tree)
– Tarjan-Hopcroft (articulation points, biconnected components)
– Kosaraju, Tarjan (strongly connected components)

– Dependency analysis (topological sort)

– Language concepts
– ASCII file input
– Exception handling

If you haven't yet worked through Volume 3.1, I highly recommended that you do so unless you're
already familiar with the material. In addition to building upon the above concepts, we'll also reuse
some of the source code from prior volumes, which won't be reexplained.

To obtain the accompanying source code for this book (which includes the pertinent source code from
prior volumes), please visit the official website, www.cppdatastructures.com. The source code is
divided into three main folders:

To purchase the full version, visit cppdatastructures.com

– ds3, which contains the (new) Volume 3 source code
– ds2, which contains (only) the reused source code from Volume 2
– dss, which contains (only) the reused source code from Volume 1

The Source files and folders section at the beginning of each chapter lists the relevant source code files
and / or folders for that chapter. The root folder (ds3) is omitted. If a folder is listed without specific
filenames, it means that we'll be using all of the files in that folder. The listing for Chapter 3.1, for
example,

Source files and folders

– CellDataPred
– HungarianAlgorithm/1
– HungarianAlgorithm/common/memberFunctions_1.h
– HungarianAlgorithm/operator()/operator()_1.h

indicates that Chapter 3.1 uses:

– All of the files in the folder ds3/CellDataPred
– All of the files in the folder ds3/HungarianAlgorithm/1
– The file ds3/HungarianAlgorithm/common/memberFunctions_1.h, but not the other files in

ds3/HungarianAlgorithm/common
– The file ds3/HungarianAlgorithm/operator()/operator()_1.h, but not the other files in

ds3/HungarianAlgorithm/operator()

Some chapters also include a listing of relevant database files and / or diagrams. The root folder (ds3)
is omitted. The listing for Chapter 3.1, for example,

Database files

– DemoWeightedGraphDatabase/17.txt

Diagrams

– diagrams/DemoWeightedGraph/17.txt

indicates that:

– ds3/DemoWeightedGraphDatabase/17.txt will be read by the accompanying program
– ds3/diagrams/DemoWeightedGraph/17.txt will be referenced throughout the chapter

To view the diagrams, use a plain text editor such as Microsoft Notepad or Notepad++, with the Word
Wrap function disabled. If Word Wrap is enabled, the diagrams may not display correctly.

The recommended study approach for each chapter is

– Open the required source files, database files, and diagrams.

To purchase the full version, visit cppdatastructures.com

– Read the chapter, following along with the files.
– Compile the source code and run the program.
– Read the chapter again, recreating the source code from scratch.
– Compile the recreated source code and run the program, verifying the output.

Here's a brief overview of what we'll cover in Volume 3.2:

In Part 1, we'll implement a network, a type of graph that models the flow of resources between
vertices. We'll also implement the Ford-Fulkerson Algorithm, which maximizes the amount of flow in
a network, and the Dijkstra-Ford Algorithm, which finds the maximum flow of minimum cost.

In Part 2, we'll introduce the concept of matching. A matching is a set of edges in which no two edges
share a common vertex. We'll implement two algorithms, one for finding a maximum matching (a
matching that contains the greatest possible number of vertices), and one for finding a stable matching
(wherein each vertex ranks possible partners in order of preference).

In Part 3, we'll implement the Hungarian Algorithm, which finds a perfect matching (a matching that
contains every vertex), with the minimum total weight.

In Part 4, we'll implement Huffman coding, a technique for compressing (reducing the size of) a file.

In Part 5, we'll implement sequential allocation, a memory management technique that organizes a
pool of memory as a linear sequence of blocks.

In Part 6, we'll implement buddy allocation, a memory management technique that organizes a pool of
memory as a binary tree of blocks.

In Part 7, we'll implement two string matching algorithms. String matching is the task of searching a
given string for a particular substring. We'll begin with the brute force algorithm, the simplest (but
least efficient) approach, followed by the Knuth-Morris-Pratt Algorithm, a more complex (but more
efficient) approach. Finally, we'll implement an algorithm to find the Levenshtein distance, the
minimum number of edits (substitutions / insertions / deletions) required to transform one string into
another.

To purchase the full version, visit cppdatastructures.com

To purchase the full version, visit cppdatastructures.com

C++ Data Structures from
Scratch, Vol. 3.2

To purchase the full version, visit cppdatastructures.com

To purchase the full version, visit cppdatastructures.com

269

Part 7: String Matching

7.1: Brute Force String Matching

Source files and folders

– bruteForceStringMatching

Chapter outline

– Finding a given substring, using the brute force approach

String matching is the process of searching an existing string, called the source string, for a particular
substring. The brute force algorithm begins at the desired starting position of the source string, finds
the first occurrence of the substring, and returns its location. Given the source string

 abbabbab

for example, suppose that we'd like to search for the substring

 ba

There are 2 occurrences of ba, one at index 2, and the other at index 5:

 abbabbab
 01234567 // index

The starting position of the search is called the start index.

– Given a start index of 0, 1, or 2, the first occurrence of ba is at index 2.
– Given a start index of 3, 4, or 5, the first occurrence of ba is at index 5.
– Given a start index of 6 or 7, the substring ba isn't found.

Beginning at the start index, the brute force algorithm scans each N-character subsequence in the
source string, where N is the length of the substring.

Suppose, for example, that our start index is 3. The substring ba is 2 characters long, so we scan each
2-character subsequence, beginning at index 3. In the following diagrams, subsequenceBegin is the
first character (beginning) of the current subsequence:

 Iteration 1 (subsequence ab)

 abbabbab
 |
 subsequenceBegin

To purchase the full version, visit cppdatastructures.com

270

 Iteration 2 (subsequence bb)

 abbabbab
 |
 subsequenceBegin
__

 Iteration 3 (subsequence ba)

 abbabbab
 |
 subsequenceBegin
__

 Iteration 4 (subsequence ab)

 abbabbab
 |
 subsequenceBegin

In each iteration, we compare each character in the current subsequence with the corresponding
character in the substring:

– If every pair of characters matches, then we've found the substring.

– If we encounter a pair of nonmatching characters, we proceed to the next subsequence and
begin the next iteration.

In the above example, we find the substring ba in iteration 3:

 Iteration 1 (subsequence ab)
 Iteration 1.1
 Character 1 of subsequence (a) != Character 1 of substring (b)
__

 Iteration 2 (subsequence bb)
 Iteration 2.1
 Character 1 of subsequence (b) == Character 1 of substring (b)
 Iteration 2.2
 Character 2 of subsequence (b) != Character 2 of substring (a)
__

 Iteration 3 (subsequence ba)
 Iteration 3.1
 Character 1 of subsequence (b) == Character 1 of substring (b)
 Iteration 3.2
 Character 2 of subsequence (a) == Character 2 of substring (a)

The algorithm is implemented as the standalone function (bruteForceStringMatching.h, lines 9-11)

 // Continued on next page

To purchase the full version, visit cppdatastructures.com

271

 std::size_t bruteForceStringMatching(const std::string& source,
 const std::string& sub,
 std::size_t startIndex = 0);

where source is the source string, sub is the substring, and startIndex is the starting point. The return
value (size_t) is the location (index) of the first occurrence of the substring. If the substring isn't found,
the function returns string::npos, a special constant value used to indicate failure.

If the substring is blank (bruteForceStringMatching.cpp, line 11), we return string::npos (line 12)
because we can't search for a blank substring.

If the substring isn't blank, we perform the search. In each iteration of the outer loop,
subsequenceBegin (line 16) is the first character (beginning) of the current subsequence. The
sourceChar, initialized to subsequenceBegin (line 20) is the current character in the subsequence. The
subChar, initialized to the beginning of the substring (line 21) is the current character in the substring.

In each iteration of the inner loop (lines 23-29), we compare the current sourceChar and subChar. If
they match, we proceed to the next pair of characters. If they don't match, or we reach the end of the
source or sub string, the loop ends.

If, upon completion of the inner loop, we reach the end of the substring (line 31), then every
sourceChar matched the corresponding subChar, in which case we've found the substring. To calculate
the index of the beginning of the substring, we take the index of the current sourceChar,

 (sourceChar – source.begin())

and subtract the size of the substring (sub.size()). We then return this value to the user (line 32).

If we complete the outer loop before finding the substring, we return string::npos (line 35) to indicate
failure.

Given the strings

 source = abbabbab
 sub = ba

and a startIndex of 0, for example, the function performs the following operations:

 bruteForceStringMatching(source, sub, 0)
 {
 Iteration 1
 {
 abbabbab
 |
 subsequenceBegin

 // Continued on next page

To purchase the full version, visit cppdatastructures.com

272

 Iteration 1.1
 {
 abbabbab ba
 | |
 sourceChar subChar

 sourceChar doesn't match subChar
 break;
 }

 ++subsequenceBegin;
 }
__

 Iteration 2
 {
 abbabbab
 |
 subsequenceBegin

 Iteration 2.1
 {
 abbabbab ba
 | |
 sourceChar subChar

 sourceChar matches subChar
 ++sourceChar;
 ++subChar;
 }

 Iteration 2.2
 {
 abbabbab ba
 | |
 sourceChar subChar

 sourceChar doesn't match subChar
 break;
 }

 ++subsequenceBegin;
 }
 }
__

 Iteration 3
 {
 abbabbab
 |
 subsequenceBegin

 // Continued on next page

To purchase the full version, visit cppdatastructures.com

273

 Iteration 3.1
 {
 abbabbab ba
 | |
 sourceChar subChar

 sourceChar matches subChar
 ++sourceChar;
 ++subChar;
 }

 Iteration 3.2
 {
 abbabbab ba
 | |
 sourceChar subChar

 sourceChar matches subChar
 ++sourceChar;
 ++subChar;
 }

 Iteration 3.3
 {
 abbabbab ba
 | |
 sourceChar subChar

 subChar is sub.end
 break;
 }

 subChar is sub.end
 return (sourceChar - source.begin) - sub.size;

 abbabbab
 |
 index 2 (return value)
 }
 }

In addition to demonstrating the above example, our test program (main.cpp) finds every single
occurrence of the substring.

We begin by initializing the strings (lines 11-12)

 abbabbab // source
 ba // sub

and the startIndex to 0 (line 13).

In each iteration of the loop, we find the first occurrence of the substring, beginning at the current

To purchase the full version, visit cppdatastructures.com

274

startIndex, and save its location to the variable subIndex (line 17).

– If the substring was found (line 19), we print its location (line 20), and advance the startIndex
to the character immediately following the substring (line 24). If we've reached the end of the
source string (startIndex == source.size()), the loop ends; otherwise, we begin the next
iteration.

– If the substring wasn't found (line 21), we terminate the loop (line 22).

The loop performs the following operations:

 a b b a b b a b
 0 1 2 3 4 5 6 7
 |
 startIndex
__

 Iteration 1

 subIndex = bruteForceStringMatching(source, sub, 0)
 = 2;

 startIndex = 2 + 2
 = 4;

 a b b a b b a b
 0 1 2 3 4 5 6 7
 | |
 subIndex startIndex
__

 Iteration 2

 subIndex = bruteForceStringMatching(source, sub, 4)
 = 5;

 startIndex = 5 + 2
 = 7;

 a b b a b b a b
 0 1 2 3 4 5 6 7
 | |
 subIndex startIndex
__

 Iteration 3

 subIndex = bruteForceStringMatching(source, sub, 7)
 = string::npos;

 subIndex is string::npos
 break;

To purchase the full version, visit cppdatastructures.com

275

The program generates the output

 Found substring @ index 2
 Found substring @ index 5

To purchase the full version, visit cppdatastructures.com

