


Building upon the first book in the series, C++ Data Structures from Scratch, Vol. 2 is a 
comprehensive guide to creating fully functional, STL-style implementations of more advanced data 
structures and algorithms, introducing new and powerful C++ language concepts along the way.

Key features:

● 160+ complete source code files, with detailed line-by-line analysis and diagrams

● 40+ sample programs directly illustrating key concepts from each chapter

● Free sample content and online support at the official website, cppdatastructures.com

Major topics:

● Heaps (STL priority_queue, make_heap, push_heap, pop_heap)

● Heap sort
● Selection sort
● Shell sort
● Merge sort
● Binary search

● B-trees
● Red-black trees (STL map)
● Skip lists

● Inheritance and polymorphism
● Smart pointers (STL shared_ptr)

● Singly-linked lists (STL forward_list)
● Binary representation and bitwise operations
● FNV hash
● Hash tables (STL unordered_map)

About the author:

● Robert MacGregor is the developer of a C++ API for financial market trading systems.  He is 
also a CTA (Commodity Trading Advisor) in the National Futures Association, and a 
Chartered Market Technician in the CMT Association.

Cover illustration: IteratedConduits by Mark J. Brady (markjaybeefractal.com)



C++ Data Structures from 
Scratch, Vol. 2

Robert MacGregor

To purchase the full version, visit cppdatastructures.com



Copyright 2018 by Robert MacGregor.  All rights reserved.

No part of this book may be reproduced or transmitted by any means without the prior written consent of the 
author.

Although every precaution has been taken to verify the accuracy of the information contained herein, the author 
and publisher assume no responsibility for errors or omissions.  Furthermore, no liability is assumed for any 
damages resulting from the use of the information or programs contained herein.

Published by South Coast Books

For errata, supplementary material, and contact / purchase information, visit www.cppdatastructures.com.

Cover illustration: IteratedConduits by Mark J. Brady (www.markjaybeefractal.com)

ISBN-10: 0-9962115-3-5
ISBN-13: 978-0-9962115-3-6

1st Printing, March 2018

To purchase the full version, visit cppdatastructures.com



Dedicated to Chris L. Marchlewski
(1955-2017)

To purchase the full version, visit cppdatastructures.com



To purchase the full version, visit cppdatastructures.com



Table of Contents

Introduction and Getting Started

Part 1: Heaps (Priority Queues)

1.1: Introducing the Heap Class 1
1.2: Completing the Heap Class 13
1.3: Rearranging an Existing Sequence into a Heap 27
1.4: The pushHeap Function 33
1.5: The popHeap Function 37
1.6: Heap Sort 41

Part 2: Selection Sort

2.1: Finding the Smallest and Largest Element 45
2.2: Completing the Implementation 51

Part 3: Shell Sort

3.1: Subsequence Sorting 55
3.2: Choosing a Series of Gap Sizes 63
3.3: Completing the Implementation 67

Part 4: Merge Sort

4.1: Splitting a Sequence in Half 69
4.2: Merging Sorted Halves 75
4.3: Completing the Implementation 83

Part 5: Binary Search

5.1: Inheritance and Iterator Tags 85
5.2: Finding the Upper and Lower Bound 89
5.3: Completing the Implementation 97

Part 6: B-Trees

6.1: Introducing the KmPair Class 99
6.2: Implementing Binary Search for KmPairs 105
6.3: Introducing the BTreeNode Class 109

To purchase the full version, visit cppdatastructures.com



6.4: Recursive In-Order Traversal 115
6.5: Introducing the BTree Class 119
6.6: Iterative In-Order Traversal 151
6.7: Implementing the Iterators 159
6.8: Erasing Elements 163
6.9: Implementing Copy and Assignment 199

Part 7: Red-Black Trees

7.1: Introducing the RedBlackTree Class 205
7.2: Inserting Elements     213
7.3: Erasing Elements          243

Part 8: Skip Lists

8.1: Introducing the SkipList Class 273
8.2: Increasing the Capacity 299
8.3: Implementing the Iterators 307
8.4: Erasing Elements 311
8.5: Implementing Copy and Assignment 323

Part 9: Polymorphism and Smart Pointers

9.1: Abstract Classes and Virtual Functions 335
9.2: Introducing the SharedPtr Class 345

Part 10: Forward Lists

10.1: Introducing the ForwardList Class 351
10.2: Erasing the Front Element 357
10.3: Implementing the Iterators 359
10.4: Inserting and Erasing Elements in the Middle 361
10.5: Implementing Copy and Assignment 365
10.6: Introducing the ForwardListSize Class 369

Part 11: Bit Representation and Bitwise Operations

11.1: Binary Numbers, Characters, and Strings 371
11.2: Integers 381
11.3: Floating-Point (Real) Numbers 389
11.4: Bitwise Operations 397

To purchase the full version, visit cppdatastructures.com



Part 12: Hash Tables

12.1: The FNV Hash Function 415
12.2: Introducing the HashTable Class 423
12.3: Implementing the Local Iterators 433
12.4: Erasing Elements 437
12.5: Implementing Copy and Assignment 441
12.6: Adjusting the Max Load Factor 447

Index 451

To purchase the full version, visit cppdatastructures.com



To purchase the full version, visit cppdatastructures.com



Introduction and Getting Started

Chapter outline

– A brief review of Volume 1
– Obtaining the accompanying source code
– Recommended study approach
– A brief overview of Volume 2

Before we begin, let's  briefly review the major topics that we covered in Volume 1 of  C++ Data 
Structures from Scratch:

– Installing and configuring an IDE (integrated development environment)
– Compiling source code into an executable program
– Basic programming concepts (variables, arithmetic, and logic)
– Program organization (functions, namespaces, and header files)
– Indirection (pointers, arrays, references, and const correctness)
– Object-oriented programming (classes) and operator overloading
– Template metaprogramming and function objects
– Recursion

– Implementing the bubble sort, insertion sort, and quick sort algorithms

– Dynamic memory allocation (implementing the Allocator class)

– Implementing the Traceable class, to verify that our data structure implementations properly 
destroy their dynamically-allocated elements

– Implementing the data structure classes:

– Array (fixed-size array)

– Vector (dynamic array)

– List (doubly-linked list)

– Ring (single-block ring buffer / deque)

– MultiRing (multi-block ring buffer / deque)

– BinaryTree (unbalanced binary search tree)

– AVLTree (balanced binary search tree)

– Implementing iterators, const_iterators, reverse_iterators, and const_reverse_iterators
– Iterator categories (tags) and time complexity

If you haven't  yet worked through Volume 1, I  highly recommended that  you do so unless you're  
already familiar with the above concepts.  In addition to building directly upon these concepts, we'll  
also reuse some of the source code from Volume 1, which won't be reexplained in great detail.

To obtain the accompanying source code for this book (which includes the pertinent source code from 
Volume 1), please visit the official website, www.cppdatastructures.com.  The source code is divided 
into two main folders:
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– ds2, which contains the (new) Volume 2 source code
– dss, which contains (only) the reused source code from Volume 1

The Source files and folders section at the beginning of each chapter lists the relevant source code files 
and / or folders for that chapter.  The root folder (ds2) is omitted.  If a folder is listed without specific 
filenames, it means that we'll be using all of the files in that folder.  The listing for Chapter 1.1, for 
example,

Source files and folders

– Heap/1
– Heap/common/memberFunctions_1.h

indicates that Chapter 1.1 uses:

– All of the files in the folder ds2/Heap/1
– The file ds2/Heap/common/memberFunctions_1.h, but not the other files in 

ds2/Heap/common

The recommended study approach is unchanged from Volume 1:

– At the beginning of each chapter, compile the included source code and run the program.
– Read the chapter, following along with the included source code.
– Read the chapter again, recreating the source code from scratch.
– Compile the recreated source code and run the program, verifying the output.

Here's a brief overview of what we'll cover in Volume 2:

In Part 1, we'll implement the Heap class.  A heap, also known as a priority queue, is a type of data 
structure that keeps the largest (or smallest) element at the top.  We'll also create a set of generic stand-
alone functions for transforming any type of random access container (vector, deque, etc.) into a heap.  
We'll then use those functions to implement the heap sort algorithm.

In Parts 2-4, we'll implement the selection sort, Shell sort, and merge sort algorithms.

In Part 5, we'll implement the binary search algorithm, an efficient method of searching sorted 
sequences, used extensively in Part 6.  We'll also introduce the concept of inheritance and learn how it 
applies to the Standard Library's iterator_tags.

In Part 6, we'll implement the BTree class.  A B-tree is a type of balanced search tree, in which each 
node can contain more than one element and have more than two children.

In Part 7, we'll implement the RedBlackTree class.  A red-black tree is an order-4 B-tree, implemented 
using a traditional binary search tree.

In Part 8, we'll implement the SkipList class.  A skip list is a special type of linked list that provides the 
same operations as a balanced search tree along with comparable (logarithmic-time) performance, but 
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with a simpler implementation.

In Part 9, we'll introduce the concepts of polymorphism, abstract classes, and virtual functions.  We'll 
also implement the SharedPtr (shared pointer) class, which automates the destruction of a 
dynamically-allocated object.

In Part 10, we'll use polymorphism to implement the ForwardList class.  A forward list is a singly-
linked list, which is more efficient (though less versatile) than its doubly-linked counterpart.  We'll use 
forward lists in Part 12.

In Part 11, we'll discuss binary numbers and the hardware (bit / byte) representation of some basic data 
types (char, string, int, double).  We'll also learn how to perform bitwise operations (manipulating 
objects at the bit level), completing the groundwork for Part 12.

In Part 12, we'll implement the FNV hash function and HashTable class.  A hash table is an associative 
data structure that provides even faster (constant-time) access than balanced search trees.
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1

Part 1: Heaps (Priority Queues)

1.1: Introducing the Heap Class

Source files and folders

– Heap/1
– Heap/common/memberFunctions_1.h

Chapter outline

– Using an array, vector, or deque to represent a binary tree
– Member functions:

– Default / copy constructors, destructor, and assignment operator
– Accessor methods: empty, size, top
– push

A heap, also known as a priority queue, is a collection in which the largest element is always at the top 
of the heap (also called the front of the queue).  A heap supports 3 main operations:

– push: Inserts a new element.  If the new element is the largest in the heap, it's moved to the 
top.

– top: Returns the top (largest) element
– pop: Removes the top element, then moves the next largest element to the top.

Consider, for example, an empty Heap<int> h:

  h.push(5)    // Insert 5 (5 becomes the top element)
  h.top()      // Element 5

  h.push(4)    // Insert 4 (5 remains at the top)
  h.top()      // Element 5

  h.push(7)    // Insert 7 (7 becomes the top element)
  h.top()      // Element 7

  h.push(6)    // Insert 6 (7 remains at the top)
  h.top()      // Element 7

  h.push(8)    // Insert 8 (8 becomes the top element)
  h.top()      // Element 8

h now contains the elements {5, 4, 7, 6, 8}, but not necessarily in that order.  A heap only guarantees 
that the largest element is at the top; no assumption can be made about the order of the other elements:
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  h.pop()      // Remove the top element, 8, then move 7 to the top
  h.top()      // Element 7

  h.pop()      // Remove the top element, 7, then move 6 to the top
  h.top()      // Element 6

  h.pop()      // Remove the top element, 6, then move 5 to the top
  h.top()      // Element 5

  h.pop()      // Remove the top element, 5, then move 4 to the top
  h.top()      // Element 4

  h.pop()      // Remove the top element, 4, after which h becomes empty

Internally, a heap is a binary tree.  But unlike the trees we studied in Volume 1, a heap stores its  
elements in a single dynamic array as opposed to a set of linked nodes.  When inserting a new element,  
we first place it at the back of the array, then move the largest element to the front via swapping.

Any  container  supporting  push_back,  pop_back, and  random  access  will  suffice,  but  for  this 
implementation we'll use a deque.  Although a vector would provide slightly faster element access (and 
therefore slightly faster sorting),  deque's  push operation will  incur much less overhead as the heap 
grows larger.

But how exactly can we use a deque (or any array-like structure, for that matter) to represent a binary 
tree?  Consider, for example, the tree

          ______5______
         /             \
      __3__           __7__
     /     \         /     \
    2       4       6       8
   / \     / \     / \     / \
  x   x   x   x   x   x   x   x

We can store this layout in an array by assigning an index value to each node.  The root, element 5, is 
placed at index 0.  Proceeding left to right, element 3 is placed at index 1, element 7 at index 2, etc.  
The entire array thus becomes

  Element                 | 5 | 3 | 7 | 2 | 4 | 6 | 8 |
  Node (n) (Array index)  | 0 | 1 | 2 | 3 | 4 | 5 | 6 |

and the tree diagram becomes

                 ___________5(0)___________            // Index values (n) are
                /                          \           // in parentheses
          ___3(1)___                    ___7(2)___
         /          \                  /          \
      2(3)          4(4)            6(5)           8(6)
     /    \        /    \          /    \         /    \
  x(7)    x(8)  x(9)    x(10)  x(11)    x(12)  x(13)   x(14)
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Given the index of a node n,

– n's parent is located at index (n/2 – 1), rounded up to the nearest integer
– n's left child is located at index (2n + 1)
– n's right child is located at index (2n + 2), i.e. (the index of n's left child + 1)

The following table demonstrates these formulas for the above tree:

  Element    Node (n)    Parent = n/2 – 1    Left = 2n + 1    Right = Left + 1
  ____________________________________________________________________________

     5           0             -1 (n/a)           1                 2
     3           1              0                 3                 4
     7           2              0                 5                 6
     2           3              1                 7                 8
     4           4              1                 9                 10
     6           5              2                 11                12
     8           6              2                 13                14

The third row, for example, indicates that element 7 resides in node 2, its parent is node 0 (element 5),  
its left child is node 5 (element 6), and its right child is node 6 (element 8).  Similarly, the sixth row 
indicates that element 6 resides in node 5, its parent is node 2 (element 7), its left child is node 11 
(null), and its right child is node 12 (null).

In addition to the underlying storage mechanism, the other major difference between a heap and a  
traditional  binary  search  tree  lies  in  the  relationships  between  elements.   In  a  heap,  the  only 
requirement is that each element is greater than both of its children:

          ______8______          // This is a heap because:
         /             \         // 8 is greater than both its children, 7 & 6
      __7__           __6__      // 7 is greater than both its children, 2 & 3
     /     \         /     \     // 6 is greater than both its children, 5 & 4
    2       3       5       4

          ______5______          // This is not a heap because:
         /             \         // 5 is not greater than its child 7
      __3__           __7__      // 3 is not greater than its child 4
     /     \         /     \     // 7 is not greater than its child 8
    2       4       6       8

The actual relationship between siblings is undefined: in any sibling pair, the left child may be greater 
than the right or vice versa, as long as both siblings are less than their parent.  In the above (first) 
diagram, for example, element 7 is greater than its right sibling (6), while element 2 is less than its 
right sibling (3).  The defining property of a heap is that both elements in each sibling pair are less than 
their parent: 7 and 6 are less than 8, 2 and 3 are less than 7, and 5 and 4 are less than 6.

Heaps and traditional binary search trees are similar in that they both use a predicate to sort their 
elements.  Recall from Volume 1 that a less-than predicate sorts a binary search tree in ascending order 
(least to greatest); conversely, a greater-than predicate sorts the tree in descending order (greatest to 
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least).  By applying this concept to heaps, we can generate two symmetrical types:

– A max heap, which uses a less-than predicate, keeps the largest element at the top
– A min heap, which uses a greater-than predicate, keeps the smallest element at the top

The Heap class is defined in the file Heap.h (lines 9-30).  The Standard Library header <functional> 
(line 5) provides the less / greater predicates.  The template parameter T represents the element type, 
and the default Predicate type is std::less<T> (line 9).

container_type (line 13) is an alias of the container class (deque<T>) used to store the elements.

Node (line 26) is the type used to represent node index values.  We're using a plain int here (as opposed 
to an unsigned int) because the root's (null) parent has an index of -1.

The member functions empty and size (Heap.h, lines 19-20) simply forward the calls to the deque 
(memberFunctions_1.h, lines 6-16).  The member function top (Heap.h, line 21) returns the root 
element (at index 0), which is always at the front of the deque (memberFunctions_1.h, lines 18-22).

Because we won't be explicitly allocating memory, we can use the compiler-generated constructors, 
destructor, and assignment operator.

To push a new element onto the heap, we first place it at the back of the deque, which corresponds to 
the bottom of the tree (a leaf node).  We then move the new element up the tree until it's at the correct 
location.  In a max heap, we achieve this by comparing the new element to its parent.  If the new 
element is less than its parent, we're done; otherwise, we swap them, climb up to the next level, and 
repeat the process.  If we reach the root node, it also indicates that we're done because there are no 
more nodes left to compare.

Consider, for example, the max heap

    Element  | 7 | 4 | 6 | 2 | 3 | 5 |
    Node     | 0 | 1 | 2 | 3 | 4 | 5 |

               ___________7(0)___________
              /                          \
        ___4(1)___                    ___6(2)
       /          \                  /
    2(3)          3(4)            5(5)

and suppose that we're pushing a new element, 8:

  // Place the new element (8) at the back of the deque

    Element  | 7 | 4 | 6 | 2 | 3 | 5 | 8 |
    Node     | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
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               ___________7(0)___________     Parent
              /                          \   /
        ___4(1)___                    ___6(2)___
       /          \                  /          \
    2(3)          3(4)            5(5)          8(6) <- Current node

  // Element 8 is not less than its parent (6), so swap them and climb up to
  // the next node

    Element  | 7 | 4 | 8 | 2 | 3 | 5 | 6 |
    Node     | 0 | 1 | 2 | 3 | 4 | 5 | 6 |

                               Parent
                              /
               ___________7(0)___________     Current node
              /                          \   /
        ___4(1)___                    ___8(2)___
       /          \                  /          \
    2(3)          3(4)            5(5)          6(6)

  // Element 8 is not less than its parent (7), so swap them and climb up to
  // the next node

    Element  | 8 | 4 | 7 | 2 | 3 | 5 | 6 |
    Node     | 0 | 1 | 2 | 3 | 4 | 5 | 6 |

                               Current node
                              /
               ___________8(0)___________
              /                          \
        ___4(1)___                    ___7(2)___
       /          \                  /          \
    2(3)          3(4)            5(5)          6(6)

  // We've reached the root of the tree.  There are no more nodes left to
  // compare, so we're done.

The push method is defined in lines 24-45 (memberFunctions_1.h).  n (line 31) is the index of the 
current node (initialized to that of the new node), and the loop condition,

  n > 0

tests whether or not the current node is the root (index 0).  The statement (line 33)

  Node nParent = static_cast<Node>(ceil(n / 2.0)) – 1;

gets us the index of n's parent, using the aforementioned formula (Parent = n/2 – 1, rounded up to the 
nearest integer).  If n is 3, for example, it becomes
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  Node nParent = static_cast<Node>(ceil(3 / 2.0)) – 1;
               = static_cast<Node>(ceil(1.5)) – 1;
               = static_cast<Node>(2.0) – 1;
               = 2 – 1;
               = 1;

The Standard Library function ceil (short for "ceiling") returns the smallest integer greater than or 
equal to the given value, as a floating-point number; this is why we're explicitly converting the result to 
an integer via static_cast.  Similarly, the Standard Library function floor returns the largest integer less 
than or equal to the given value:

    n     ceil(n)    floor(n)
  ______________________________

  -2        -2         -2
  -1.8      -1         -2
  -0.5       0         -1
   0         0          0
   0.3       1          0
   1         1          1
   1.6       2          1

The <cmath> header (line 1) provides ceil and floor, and the <utility> header (line 2) provides the 
Standard Library swap function.

Once we have the index of n's parent, we can compare the two elements and proceed accordingly.  
Consider, for example, an empty Heap<int> h, which uses the default (less-than) predicate:

  h.push(5);

  _deque.push_back(5);

    Element  | 5 |
    Node     | 0 |

  Initializer:

    Node n = _deque.size() - 1;                         // n = 0

  Terminate loop
________________________________________________________________________________

  h.push(3);

  _deque.push_back(3);

    Element  | 5 | 3 |
    Node     | 0 | 1 |
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               ___________5(0)
              /
           3(1)

  Initializer:

    Node n = _deque.size() - 1;                         // n = 1

  Iteration 1:

    Node nParent = static_cast<Node>(ceil(n/2.0)) – 1;  // nParent = 0

    if (_predicate(_deque[n], _deque[nParent]))         // Is 3 less than 5?
    {
      break;                                            // Yes, terminate loop
    }
    else
    {
      swap(_deque[n], _deque[parent]);
      n = nParent;
    }
________________________________________________________________________________

  h.push(7);

  _deque.push_back(7);

    Element  | 5 | 3 | 7 |
    Node     | 0 | 1 | 2 |

               ___________5(0)___________
              /                          \
           3(1)                          7(2)

  Initializer:

    Node n = _deque.size() - 1;                         // n = 2

  Iteration 1:

    Node nParent = static_cast<Node>(ceil(n/2.0)) – 1;  // nParent = 0

    if (_predicate(_deque[n], _deque[nParent]))         // Is 7 less than 5?
    {
      break;
    }
    else
    {
      swap(_deque[n], _deque[parent]);                  // No, swap 7 and 5
      n = nParent;                                      // n = 0
    }

    Element  | 7 | 3 | 5 |
    Node     | 0 | 1 | 2 |
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               ___________7(0)___________
              /                          \
           3(1)                          5(2)

  Terminate loop
________________________________________________________________________________

  h.push(2);

  _deque.push_back(2);

    Element  | 7 | 3 | 5 | 2 |
    Node     | 0 | 1 | 2 | 3 |

               ___________7(0)___________
              /                          \
        ___3(1)                          5(2)
       /
    2(3)

  Initializer:

    Node n = _deque.size() - 1;                         // n = 3

  Iteration 1:

    Node nParent = static_cast<Node>(ceil(n/2.0)) – 1;  // nParent = 1

    if (_predicate(_deque[n], _deque[nParent]))         // Is 2 less than 3?
    {
      break;                                            // Yes, terminate loop
    }
    else
    {
      swap(_deque[n], _deque[parent]);
      n = nParent;
    }

________________________________________________________________________________

  h.push(4);

  _deque.push_back(4);

    Element  | 7 | 3 | 5 | 2 | 4 |
    Node     | 0 | 1 | 2 | 3 | 4 |

               ___________7(0)___________
              /                          \
        ___3(1)___                       5(2)
       /          \
    2(3)          4(4)
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  Initializer:

    Node n = _deque.size() - 1;                         // n = 4

  Iteration 1:

    Node nParent = static_cast<Node>(ceil(n/2.0)) – 1;  // nParent = 1

    if (_predicate(_deque[n], _deque[nParent]))         // Is 4 less than 3?
    {
      break;
    }
    else
    {
      swap(_deque[n], _deque[parent]);                  // No, swap 4 and 3
      n = nParent;                                      // n = 1
    }

    Element  | 7 | 4 | 5 | 2 | 3 |
    Node     | 0 | 1 | 2 | 3 | 4 |

               ___________7(0)___________
              /                          \
        ___4(1)___                       5(2)
       /          \
    2(3)          3(4)

  Iteration 2:

    Node nParent = static_cast<Node>(ceil(n/2.0)) – 1;  // nParent = 0

    if (_predicate(_deque[n], _deque[nParent]))         // Is 4 less than 7?
    {
      break;                                            // Yes, terminate loop
    }
    else
    {
      swap(_deque[n], _deque[parent]);
      n = nParent;
    }
________________________________________________________________________________

  h.push(6);

  _deque.push_back(6);

    Element  | 7 | 4 | 5 | 2 | 3 | 6 |
    Node     | 0 | 1 | 2 | 3 | 4 | 5 |

               ___________7(0)___________
              /                          \
        ___4(1)___                    ___5(2)
       /          \                  /
    2(3)          3(4)            6(5)
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  Initializer:

    Node n = _deque.size() - 1;                         // n = 5

  Iteration 1:

    Node nParent = static_cast<Node>(ceil(n/2.0)) – 1;  // nParent = 2
    if (_predicate(_deque[n], _deque[nParent]))         // Is 6 less than 5?
    {
      break;
    }
    else
    {
      swap(_deque[n], _deque[parent]);                  // No, swap 6 and 5
      n = nParent;                                      // n = 2
    }

    Element  | 7 | 4 | 6 | 2 | 3 | 5 |
    Node     | 0 | 1 | 2 | 3 | 4 | 5 |

               ___________7(0)___________
              /                          \
        ___4(1)___                    ___6(2)
       /          \                  /
    2(3)          3(4)            5(5)

  Iteration 2:

    Node nParent = static_cast<Node>(ceil(n/2.0)) – 1;  // nParent = 0

    if (_predicate(_deque[n], _deque[nParent]))         // Is 6 less than 7?
    {
      break;                                            // Yes, terminate loop
    }
    else
    {
      swap(_deque[n], _deque[parent]);
      n = nParent;
    }
________________________________________________________________________________

  h.push(8);

  _deque.push_back(8);

    Element  | 7 | 4 | 6 | 2 | 3 | 5 | 8 |
    Node     | 0 | 1 | 2 | 3 | 4 | 5 | 6 |

               ___________7(0)___________
              /                          \
        ___4(1)___                    ___6(2)___
       /          \                  /          \
    2(3)          3(4)            5(5)          8(6)
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  Initializer:

    Node n = _deque.size() - 1;                         // n = 6

  Iteration 1:

    Node nParent = static_cast<Node>(ceil(n/2.0)) – 1;  // nParent = 2
    if (_predicate(_deque[n], _deque[nParent]))         // Is 8 less than 6?
    {
      break;
    }
    else
    {
      swap(_deque[n], _deque[parent]);                  // No, swap 8 and 6
      n = nParent;                                      // n = 2
    }

    Element  | 7 | 4 | 8 | 2 | 3 | 5 | 6 |
    Node     | 0 | 1 | 2 | 3 | 4 | 5 | 6 |

               ___________7(0)___________
              /                          \
        ___4(1)___                    ___8(2)___
       /          \                  /          \
    2(3)          3(4)            5(5)          6(6)

  Iteration 2:

    Node nParent = static_cast<Node>(ceil(n/2.0)) – 1;  // nParent = 0

    if (_predicate(_deque[n], _deque[nParent]))         // Is 8 less than 7?
    {
      break;
    }
    else
    {
      swap(_deque[n], _deque[parent]);                  // No, swap 8 and 7
      n = nParent;                                      // n = 0
    }

    Element  | 8 | 4 | 7 | 2 | 3 | 5 | 6 |
    Node     | 0 | 1 | 2 | 3 | 4 | 5 | 6 |

               ___________8(0)___________
              /                          \
        ___4(1)___                    ___7(2)___
       /          \                  /          \
    2(3)          3(4)            5(5)          6(6)

  Terminate loop
________________________________________________________________________________

To test the push method, we'll use the function (main.cpp, line 7)
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  void pushAndPrintTop(Heap<int>* h, int i);

which pushes the given value i onto the heap, then prints the current size and top element (lines 30-39). 
Our test program (lines 10-26) constructs a Heap<int> h and pushes the values {5, 3, 7, 2, 4, 6, 8}, 
generating the output

  push 5
    size 1
    top 5

  push 3
    size 2
    top 5

  push 7
    size 3
    top 7

  push 2
    size 4
    top 7

  push 4
    size 5
    top 7

  push 6
    size 6
    top 7

  push 8
    size 7
    top 8
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